This article was downloaded by:

On: 28 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Phosphorus, Sulfur, and Silicon and the Related Elements

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713618290

Synthesis and Structures of New Polynuclear Tin Chalcogen Compounds
Christoph Wagner; Ralf Hauser; Kurt Merzweiler

To cite this Article Wagner, Christoph , Hauser, Ralf and Merzweiler, Kurt(2001) 'Synthesis and Structures of New Polynuclear Tin Chalcogen Compounds', Phosphorus, Sulfur, and Silicon and the Related Elements, 168: 1, 191 - 197 To link to this Article: DOI: 10.1080/10426500108546553

URL: http://dx.doi.org/10.1080/10426500108546553

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis and Structures of New Polynuclear Tin Chalcogen Compounds

CHRISTOPH WAGNER, RALF HAUSER and KURT MERZWEILER

Institut für Anorganische Chemie der Martin-Luther-Universität Halle Kurt-Mothes-Str. 2 D-06120 Halle

Novel tin chalcogen ring and cage compounds are accessible by the reaction of [{Cp*(CO)₂Fe}SnCl₃} with chalcogen transfer reagents like Ag₂O, Na₂S and E(SiMe₃)₂ (E = S, Se).

Keywords: Tin; Chalcogen; Cage compounds; Crystal structure

1. INTRODUCTION

Di- and trifunctional tin halides of the type R_2SnCl_2 and $RSnCl_3$ ($R = \{(CO)_4Co\}$, $\{Cp(CO)_2Fe\}$, $\{Cp(CO)_3Mo\}$, etc.) react with silylated chalcogens $E(SiMe_3)_2$ (E = S, Se, Te) to give organometal substituted tin chalcogen compounds [1, 2]. We now have been interested to use $[\{Cp^*(CO)_2Fe\}SnCl_3]$ (1) ($Cp^*=Me_3C_5$), which contains the sterically demanding Me_5C_5 ligand, as starting compound for the synthesis of new $\{Cp^*(CO)_2Fe\}$ substituted tin chalcogen rings and cages.

2. RESULTS

2.1. Synthesis and structure of [{Cp*(CO)₂Fe}SnCl₃] (1)

The starting compound [{Cp*(CO)₂Fe}SnCl₃] (1) is obtained from the insertion reaction of SnCl₂ into the Fe-Cl bond of [Cp*(CO)₂FeCl]. The X-ray crystal structure determination [3] revealed, that 1 contains a tin atom which is coordinated nearly tetrahedrally by three chlorine atoms and the iron atom of the {Cp*(CO)₂Fe} fragment. The molecular geometry of 1 is unexecptional with Sn-Fe (246.0(1) pm) and Sn-Cl distances (235.7(1)-236.2(2) pm) lying in the expected ranges. The steric influence of the bulky {Cp*(CO)₂Fe} group leads to relatively large Fe-Sn-Cl angles (118.3(1)-120.6(1)°) and comparatively small Cl-Sn-Cl angles (98.5(1)-97.0(1)°).

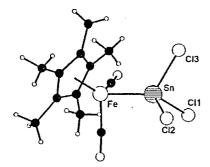
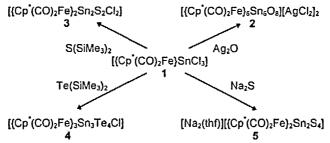



FIGURE 1. molecular The structure of 1 Selected bond lenghts (pm) and angles (°): Sn-Fe 246.0(1), Sn-Cl(1) 235.7(1), Sn-Cl(2) 236.2(2), Sn-Cl(3) 236.1(1), CI(1)-Sn-CI(2) 99.6(1), Cl(1)-Sn-Cl(3) 97.0(1), Cl(2)-Sn-CI(3) 98.5(1), Fe-Sn-Cl(1) 118.3(4), Fe-Sn-Cl(2) 118.4(1), Fe-Sn-CI(3) 120.6(1)

The synthesis of {Cp*(CO)₂Fe} substituted tin chalcogen compounds

Scheme I summarizes the reactions of 1 with the chalcogen transfer reagents Ag₂O, S(SiMe₃)₂, Te(SiMe₃)₂ and Na₂S.

SCHEME 1. Reactions of 1 with chalcogen transfer reagents

2.2.1 The synthesis of $[\{Cp^{\bullet}(CO)_{2}Fe\}_{o}Sn_{o}O_{s}][AgCl_{2}]_{2}$ (2)

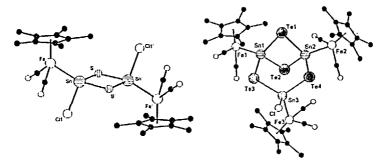
On treatment with Ag₂O, 1 reacts in aqueous acetone to give a yellow solution and a white precipitate of AgCl. After filtration, removal of the solvent and recrystallisation from thf/n-heptane, yellow orange crystals of [{Cp[°](CO)₂Fe}₆Sn₆O₈][AgCl₂]₂ (2) can be obtained. 2 is ionic in character and contains [{Cp[°](CO)₂Fe}₆Sn₆O₈]^{2*} cations and [AgCl₂] anions. The cluster cation (Fig. 2) consists of an octahedral arrangement of six {Cp[°](CO)₂Fe}Sn groups. Each of the 8 triangular faces of the Sn₆-octahedron is capped by a μ₃-oxygen atom. The resulting Sn₆O₈ cage can be described as a distorted rhombic dodecahedron, which consists of 12 Sn₂O₂ four-membered rings. In the cluster cation, the tin atoms exhibit a square-pyramidal coordination geometry with four oxygen atoms in the

basal sites of the square pyramid and the iron atom of the {Cp*(CO)₂Fe} group in the apex. The Sn-O distances vary from 209.2(3) to 212.5(3) pm. This is in accordance with the Sn-O bond lengths observed in other tin oxygen clusters, e. g. [{BuSn}₁₂O₁₄(OH)₆]^{2*}, [4, 5], [(¹PrSn)₁₂O₁₄(OH)₆]^{2*} [6]. The [AgCl₂] anion (Fig. 4) is almost linear with Ag-Cl distances of 230.5(3) pm and a Cl-Ag-Cl angle of 178.0(1)°. Similiar values have been observed in [K(2,2,2-crypt)][AgCl₂] [7].



FIGURE 2.
The molecular structure of the cluster cation [{Cp*(CO)₂Fe}₆O₈]²⁺ (the CO and Cp* groups are omitted for clarity)

FIGURE 3.
The molecular structure of the [AgCl₂] anion


2.2.2 The synthesis of Sn-S and Sn-Te derivatives

For the synthesis of Sn-S and Sn-Te derivatives, S(SiMe₃)₂, Te(SiMe₃)₂ and Na₂S were used as chalcogen sources.

Treatment of 1 with S(SiMe₃)₂ affords [{Cp*(CO)₂Fe}₂Sn₂S₂Cl₂] (3), which contains a four-membered Sn₂S₂ ring with an alternating arrangement of Sn and S atoms (Fig. 4). 3 is situated about a crystallographic center of inversion, and therefore the Sn₂S₂ ring is exactly planar. The tin atoms are coordinated almost tetrahedrally by two bridging S atoms, a terminal {Cp*(CO)₂Fe} group and a chlorine atom. The terminal substituents are *trans* with respect to the ring plane. Although 3 contains two Sn-Cl bonds, no further reaction with S(SiMe₃)₂ occurs, even if an excess of S(SiMe₃)₂ is added and elevated temperatures are applied. This means that the reactive Sn-Cl bonds are protected effectively by the sterically demanding {Cp*(CO)₂Fe} groups.

[{Cp(Ph₃P)Ni}₂Sn₂S₂Cl₂], which is an analogue of 3 shows a similar low reactivity towards S(SiMe₃)₂ [8].

The Te derivative [{Cp*(CO)₂Fe}₃Sn₃Te₄Cl] (4) is obtained from the reaction of 1 with Te(SiMe₃)₂.Unlike 3, 4 contains a bicyclic Sn₃Te₄-core, which consists of a Sn₃Te₃ ring (with chair conformation) and an additional μ_2 -bridging Te atom (Fig. 5). The tin atoms exhibit two coordination modes: Sn1 and Sn2 are coordinated roughly tetrahedrally by three bridging Te atoms and a terminal {Cp*(CO)₂Fe} group, whereas Sn3 is bound to two tellurium atoms, a terminal Cl atom and a {Cp*(CO)₂Fe} group. In contrast to 3, the four-membered ring Sn1-Te1-Sn2-Te2 is puckered with a folding angle of 26° (with respect to the line Te1-Te2). The Sn₃Te₄ framework of 4 is closely related to the structure of [{Cp(CO)₂Fe}₃Sn₃Se₄Cl] [9].

FIGURE 4.

The molecular structure of 3 (H atoms omitted for clarity)

Selected bond lenghts (pm) and angles (°): Fe-Sn 247.6(1), Sn-S 243.9(1), Sn-S' 243.8(1), Sn-Cl(1) 241.6(2), Sn-S-Sn' 86.2(1), Cl(1)-Sn-S' 101.6(1), Cl(1)-Sn-S 102.7(1), S-Sn-S' 93.8(1), Cl(1)-Sn-Fe 105.8(1), S'-Sn-Fe 126.2(1), S-Sn-Fe 123.2(1)

FIGURE 5.

The molecular structure of 4 (H atoms omitted for clarity)

Selected bond lengths (pm) and angles (°): Sn-Fe 252.4(1)-253.7(2), Sn-Te 276.3(1)-280.5(1), Sn(3)-Cl 247.1(3), Tc(1)-Sn(1)-Tc(2) 96.2(1), Tc(2)-Sn(1)-Tc(3) 101.9(1), Tc(1)-Sn(1)-Te(3) 106.6(1), Tc(2)-Sn(2)-Te(4) 105.8(1), Tc(1)-Sn(2)-Te(2) 95.7(1), Tc(1)-Sn(2)-Te(4) 104.8(1), Cl-Sn(3)-Te(3) 93.1(1), Cl-Sn(3)-Te(4) 96.8(1)

The reaction of 1 with Na₂S in the leads to a complete substitution of the Cl atoms and the ionic compound [Na₂(thf)][{Cp⁺(CO)₂Fe}₂Sn₂S₄] (5) (Fig. 6) is obtained. The [{Cp⁺(CO)₂Fe}₂Sn₂S₄]²⁻ anion contains a four-

membered Sn₂S₂ ring. Additionally, the tin atoms are bound to a terminal S atom and a {Cp (CO)₂Fe} group. In contrast to 2, the {Cp (CO)₂Fe} are in a cis arrangement and the Sn₂S₂ ring is slightly folded. In 5, the Sn-S distances can be divided into two groups. As expected, the endocyclic Sn-S bond lengths (246.8(1)-248.7(1) pm) are comparable with the corresponding values in 3, whereas the exocyclic Sn-S bonds are much shorter (234.6(1) and 237.9(1) pm). Similar terminal Sn-S distances have been observed in thiostannates like [SnS₄]⁴· [10] or [PhSnS₃]³· [11].

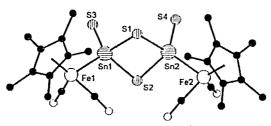


FIGURE 6. The molecular structure of the $[{Cp}^{\bullet}(CO)_2Fe]_2Sn_2S_4]^2$ -anion

2.3 Synthesis of a mixed tin-sulfur-nickel cluster

Thiostannates like 5 could be considered as potential ligands for the synthesis of polynuclear transition metal complexes. Currently we are investigating the reactivity of 5 and some related thiostannates, e. g. [RSnS₃]³⁻ (R = Me, Ph, {Cp(CO)₂Fe}), towards transition metal halides [12]. Recently we found that [MeSnS₃]³⁻, which is accessible by the cleavage of the adamantane like Me₄Sn₄S₆ by sulfide ions, reacts with [Cl₂Ni(PEt₃)₂] in aqueous thf to give [(Me₂Sn₂S₄)S₂Ni₃(PEt₃)₄] (6). 6 (Fig. 7) contains a Sn₂S₆Ni₃ cluster framework which can be divided formally into two parts consisting of a Me₂Sn₂S₄ fragment and a Ni₃S₂ unit. The Me₂Sn₂S₄ part in related very closely to the structure of the [{Cp*(CO)₂Fe}₂Sn₂S₄]²⁻ anion observed in 5. The "terminal" sulfur atoms

unit. The $Me_2Sn_2S_4$ part is related very closely to the structure of the $[\{Cp^*(CO)_2Fe\}_2Sn_2S_4\}^{2r}$ anion observed in 5. The "terminal" sulfur atoms of the $Me_2Sn_2S_4$ unit (S3 and S4) are bound to two Ni atoms of the Ni_3S_2 cluster unit. The Ni_3S_3 cluster fragment consists of three Ni atoms in a triangular arrangement and two μ_3 -S atoms. The coordination of the Ni atoms is almost square planar. Ni1 and Ni3 have similar coordination spheres consisting of the μ_3 -bridging sulfur atoms S5 and S6, a terminal sulfur atom of the $Me_2Sn_2S_4$ fragment (S3 or S4, respectively) and a PEt₃ ligand. Ni2, which is not bound to the $Me_2Sn_2S_4$ part, is coordinated by two phosphine ligands and the sulfur atoms S5 and S6. Like in the isolectronic Ni_3 cluster $[Cl_2Ni_3(Ph_3P)_4]$ [13], the Ni-Ni distances are

rather long (290.0(1)-297.5(1) pm) without any significant Ni-Ni interactions.

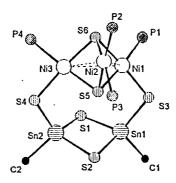


FIGURE 7. The molecular structure of 6 (H atoms and ethyl groups omittet for clarity)

Selected bond lengths (pm) and angles (°): Sn(1)-S(1) 243.7(1), Sn(1)-S(2) 244.1(1), Sn(1)-S(3) 235.0(1), Sn(2)-S(1) 243.3(1), Sn(2)-S(2) 244.3(1), Sn(2)-S(4) 235.7(1), Ni(1)-S(3) 224.4(1), Ni(1)-S(5) 217.1(1), Ni(1)-S(6) 219.2(1), Ni(1)-Ni(2) 290.6(1), Ni(1)-Ni(3) 297.5(1), Ni(2)-S(5) 218.8(1), Ni(2)-S(6) 220.4(1), Ni(2)-Ni(3) 290.0(1), Ni(3)-S(4) 224.1(1), Ni(3)-S(5) 217.8(1), Ni(3)-S(6) 219.0(1), S(1)-Sn(1)-S(2) 93.5(1), S(1)-Sn(1)-S(3) 113.3(1), S(2)-Sn(1)-S(3) 121.0(1), S(1)-Sn(2)-S(2) 93.5(1), S(1)-Sn(2)-S(4) 114.4(1), S(2)-Sn(2)-S(4) 120.2(1), Sn(1)-S(1)-Sn(2) 85.2(1), Sn(1)-S(2)-Sn(2) 84.9(1), Ni(1)-S(3)-Sn(1) 106.5(1), Ni(3)-S(4)-Sn(2) 106.2(1)

Acknowlegdement

This work was supported by the Fonds der Chemischen Industrie.

References

- [1] K. Merzweiler, H. Kraus and L. Weisse, Z. Naturforsch., 48b, 287, (1993).
- [2] K. Merzweiler and L. Weisse, Z. Naturforsch., 45b, 971, (1990).
- [3] Crystal structure determinations: The data collection was performed on a Stoe IPDS imaging plate diffraction system at 220 K with MoK_a-radiation ($\lambda = 0.71073$ Å). The structures were solved by direct methods using SHELXS-97 and refined with SHELXL-97 [14]. The molecular drawings were generated with DIAMOND [15]. Crystallographic data (excluding structure factors) for the structures in this paper have been deposited with the Cambridge Crystallographic Data Centre as supplementary publication, Copies of the data can be obtained, free of charge, on application to CCDC, 12 Union Road, Cambridge CB2 1EZ, UK, (fax: +44 1223 336033 or e-mail: deposit@ccdc.cam.ac.uk). a) 1, $C_{12}H_{15}Cl_{3}FeO_{2}Sn$, monoclinic, $P2_{1}/c$, Z=4, b = 996.2(2)a = 1184.4(3)pm, pm, c = 1418.3(4)pm, $\beta = 91.57(3)^{\circ}$ $V = 1672.8(7) \times 10^6 \text{ pm}^3$. 12578 reflections collected in the 2 Θ range 5.8-56°, 3045

unique reflections, 233 parameters, $R_1(I>2\sigma(I))=0.031$, $wR_2(all\ data)=0.102$. CCDC: 147192. b) $3\times2\text{CH}_2\text{Cl}_2$, $C_2\text{ch}_{34}\text{Cl}_6\text{Fe}_2\text{O}_4\text{S}_2\text{Sn}_2$, orthorhombic, Pbca, Z=4, a=1204.0(4) pm, b=1287.5(8) pm, c=2429.2(8) pm, $V=3766(3)\times10^6\text{pm}^3$. 16053 reflections in the 20 range $4.8-50^\circ$, 3055 unique reflections, 250 parameters, $R_1(I>2\sigma(I))=0.031$, $wR_2(all\ data)=0.087$. CCDC: 147193. c) 4×2 thf, $C_{44}H_{45}\text{CIF}_9\text{O}_8\text{Sn}_3\text{Te}_4$, triclinic, $P\bar{1}$, Z=2, a=1400.3(2) pm, b=1418.4(3) pm, c=1506.6(4) pm, $\alpha=95.44(3)^\circ$, $\beta=100.04(3)^\circ$, $\gamma=98.03(2)^\circ$, $V=2895.6(11)\times10^\circ$ pm 3 . 25880 reflections in the 20 range $3.6-50^\circ$, 9584 unique reflections, 589 parameters, $R_1(I>2\sigma(I))=0.047$, $wR_2(all\ data)=0.113$. CCDC: 147194. d) 6×2 thf, $C_{34}H_{82}\text{Ni}_3\text{O}_2\text{P}_4S_6\text{Sn}_2$, triclinic, $P\bar{1}$, Z=2, a=1129.4 (2) pm, b=1329.1(3) pm, c=1890.3(3) pm, $\alpha=87.81(2)^\circ$. $\beta=81.86(2)^\circ$, $\gamma=71.11(2)^\circ$, $V=2896(1)\times10^\circ$ pm 3 . 22761 reflections in the 20 range $4.2-52^\circ$, 9548 unique reflections, 410 parameters, $R_1(I>2\sigma(I))=0.035$, $wR_2(all\ data)=0.101$. CCDC: 147195.

- [4] F. Banse, F. Ribot, P. Tolédano, J. Maquet and C. Sanchez, *Inorg. Chem.*, 34, 6371, (1995).
- [5] D. Dakternieks, H. Zhu, E. Tiekink and R. Colton, J. Organomet. Chem., 476, 33, (1994).
- [6] H. Puff and H. Reuter, J. Organomet. Chem., 373, 173, (1983).
- [7] G. Helgeson and S. Jagner, Inorg. Chem., 30, 2574, (1991).
- [8] K. Merzweiler and H. Kraus, Z. Naturforsch., 52b, 635, (1997).
- [9] K. Merzweiler and H. Kraus, Z. Naturforsch., 48b, 1009, (1993).
- [10] W. Schiwy, S. Pohl and B. Krebs, Z. anorg. allg. Chem., 402, 77, (1973).
- [11] R. Hauser and K. Merzweiler, Z. anorg. allg. Chem., 624, 10, (1998).
 [12] R. Hauser and K. Merzweiler, XVIIIth International Conference on Organometallic
- Chemistry, Munich, 1998, Abstract A104.
 [13] D. Fenske, H. Fleischer, H. Krautscheid and J. Magull, Z. Naturforsch., 45b, 127,
- (1990).[14] G. M. Sheldrick, SHELXS-97, SHELXL-97, Programs for Crystal Structure Determination, Göttingen (1997).
- [15] Diamond, Visuelles Informationssystem f
 ür Kristallstrukturen, G. Bergerhoff, K. Brandenburg, Bonn (1996).